7.4: Function Operations and Composition of Functions

HCPS III

- **Standard 9:** Patterns, Functions, and Algebra: PATTERNS AND FUNCTIONAL RELATIONSHIPS: Understand various types of patterns and functional relationships.
- **Benchmark MA.All.9.4:** Use the appropriate terminology and notation to define functions and their properties (e.g., domain, range, function composition, inverse, zeros).

Goal: Perform operations with functions, including composition of functions.

Operations on Functions

Operations on Functions

Let f(x) and g(x) be any two functions. You can add, subtract, multiply, or divide f(x) and g(x) to form a new function h(x).

Operation	Definition	Example Let $f(x) = 2x$ and $g(x) = x + 1$.
Addition	h(x) = f(x) + g(x)	h(x) = 2x + (x + 1) = 3x + 1
Subtraction	h(x) = f(x) - g(x)	h(x) = 2x - (x + 1) = x - 1
Multiplication	$h(x) = f(x) \cdot g(x)$	$h(x) = (2x)(x + 1) = 2x^2 + 2x$
Division	$h(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$	$h(x) = \frac{2x}{x+1}, x \neq -1$

The domain of *h* consists of the *x*-values that are in the domains of both *f* and *g*. When *h* involves division, the domain does not include *x*-values for which the denominator is equal to zero.

Example 1: Add and Subtract Functions

Let $f(x) = 3x^2$ and g(x) = x - 1. Find h(x) and state its domain. **a.)** h(x) = f(x) + g(x)**b.)** h(x) = f(x) - g(x)

Extra Example 1: Add and Subtract Functions

Let $f(x) = 4x^2$ and g(x) = x + 1. Find h(x) and state its domain.

a.) h(x) = f(x) + g(x) **b.)** h(x) = f(x) - g(x)

Example 2: Multiply and Divide Functions

Let $f(x) = x^4$ and g(x) = 3x. Find h(x) and state its domain.

a.) $h(x) = f(x) \circ g(x)$ **b.)** $h(x) = \frac{f(x)}{g(x)}$

Extra Example 2: Multiply and Divide Functions

Let $f(x) = x^3$ and g(x) = 2x. Find h(x) and state its domain.

a.) $h(x) = f(x) \circ g(x)$ **b.)** $h(x) = \frac{f(x)}{g(x)}$

Composition of Functions

Composition of Functions: replacing the variable of a function with an entirely different function.

e.g., let f(x) = 2x and g(x) = 5x + 3

The composition of **f** with **g** is:

f(g(x)) = f(5x + 3)= 2(5x + 3)= 10x + 6

The composition of *g* with *f* is:

$$g(f(x)) = g(2x)$$

= 5(2x) + 3
= 10x + 3

Example 3: Write a Composition of Functions

Let $f(x) = x^2$ and g(x) = 3x - 1. Find the following. **a.)** f(g(x)) **b.)** g(f(x))

c.) the domain of each composition.

Extra Example 3: Write a Composition of Functions Let $f(x) = x^2$ and g(x) = 2x + 3. Find the following. **a.)** f(g(x)) **b.)** g(f(x))

c.) the domain of each composition.

Example 4: Evaluate a Composition of Functions

a.) Let $f(x) = x^2 - 4$ and g(x) = 4x. Evaluate f(g(2)).

b.) Let
$$f(x) = x^2 + 3$$
 and $g(x) = 5x$. Evaluate $f(g(2))$.

Example 5: Model a Real-World Situation

You have a coupon for \$15 off all Spring clothes over \$50. For this weekend only, the department store is offering an additional 20% off all purchases. Let x be the cost of your purchases. Then f(x) = x - 15 and g(x) = 0.80x. Find g(f(x)). Tell what it represents.