7.4: Function Operations and Composition of Functions

HCPS III

- Standard 9: Patterns, Functions, and Algebra: PATTERNS AND FUNCTIONAL RELATIONSHIPS: Understand various types of patterns and functional relationships.
- Benchmark MA.AII.9.4: Use the appropriate terminology and notation to define functions and their properties (e.g., domain, range, function composition, inverse, zeros).

Goal: Perform operations with functions, including composition of functions.

Operations on Functions

Operations on Functions

Let $f(x)$ and $g(x)$ be any two functions. You can add, subtract, multiply, or divide $f(x)$ and $g(x)$ to form a new function $h(x)$.

Operation	Definition	Example
Let $f(x)=2 x$ and $\mathrm{g}(x)=x+1$.		
Addition	$h(x)=f(x)+g(x)$	$h(x)=2 x+(x+1)=3 x+1$
Subtraction	$h(x)=f(x)-g(x)$	$h(x)=2 x-(x+1)=x-1$
Multiplication	$h(x)=f(x) \cdot g(x)$	$h(x)=(2 x)(x+1)=2 x^{2}+2 x$
Division	$h(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$	$h(x)=\frac{2 x}{x+1}, x \neq-1$

The domain of h consists of the x-values that are in the domains of both f and g. When h involves division, the domain does not include x-values for which the denominator is equal to zero.

Example 1: Add and Subtract Functions

Let $f(x)=3 x^{2}$ and $g(x)=x-1$. Find $h(x)$ and state its domain.
a.) $h(x)=f(x)+g(x)$
b.) $h(x)=f(x)-g(x)$

Extra Example 1: Add and Subtract Functions

Let $f(x)=4 x^{2}$ and $g(x)=x+1$. Find $h(x)$ and state its domain.
a.) $h(x)=f(x)+g(x)$
b.) $\quad h(x)=f(x)-g(x)$

Example 2: Multiply and Divide Functions

Let $f(x)=x^{4}$ and $g(x)=3 x$. Find $h(x)$ and state its domain.
a.) $\quad h(x)=f(x) \circ g(x)$
b.) $h(x)=\frac{f(x)}{g(x)}$

Extra Example 2: Multiply and Divide Functions

Let $f(x)=x^{3}$ and $g(x)=2 x$. Find $h(x)$ and state its domain.
a.) $\quad h(x)=f(x) \circ g(x)$
b.) $\quad h(x)=\frac{f(x)}{g(x)}$

Composition of Functions

Composition of Functions: replacing the variable of a function with an entirely different function.
e.g., let $f(x)=2 x$ and $g(x)=5 x+3$

The composition of f with g is:

$$
\begin{aligned}
f(g(x)) & =f(5 x+3) \\
& =2(5 x+3) \\
& =10 x+6
\end{aligned}
$$

The composition of g with f is:

$$
\begin{aligned}
g(f(x)) & =g(2 x) \\
& =5(2 x)+3 \\
& =10 x+3
\end{aligned}
$$

Example 3: Write a Composition of Functions

Let $f(x)=x^{2}$ and $g(x)=3 x-1$. Find the following.
a.) $f(g(x))$
b.) $g(f(x))$
c.) the domain of each composition.

Extra Example 3: Write a Composition of Functions

 Let $f(x)=x^{2}$ and $g(x)=2 x+3$. Find the following.a.) $f(g(x))$
b.) $g(f(x))$
c.) the domain of each composition.

Example 4: Evaluate a Composition of Functions

a.) Let $f(x)=x^{2}-4$ and $g(x)=4 x$. Evaluate $f(g(2))$.
b.) Let $f(x)=x^{2}+3$ and $g(x)=5 x$. Evaluate $f(g(2))$.

Example 5: Model a Real-World Situation

You have a coupon for $\$ 15$ off all Spring clothes over $\$ 50$. For this weekend only, the department store is offering an additional 20% off all purchases. Let x be the cost of your purchases. Then $f(x)=x-15$ and $g(x)=0.80 x$. Find $g(f(x))$. Tell what it represents.

