

Solving equations using logs

We can use logarithms to solve equations where the unknown is in the power as in, for example, $4^x = 15$. Whilst logarithms to any base can be used, it is common practice to use base 10, as these are readily available on your calculator.

Examples

Example

Solve the equation $4^x = 15$.

Solution

We can solve this by taking logarithms of both sides. So,

$$\log 4^x = \log 15$$

Now using the laws of logarithms, and in particular $\log A^n = n \log A$, the left hand side can be re-written to give

$$x \log 4 = \log 15$$

This is more straightforward. The unknown is no longer in the power. Straightaway, dividing both sides by log 4,

$$x = \frac{\log 15}{\log 4}$$

This value can be found from a calculator. You should check that this equals 1.953 (to 3 decimal places).

Example

Solve the equation $6^x = 2^{x-3}$.

Solution

Take logarithms of both sides.

$$\log 6^x = \log 2^{x-3}$$

Now use the laws of logarithms.

$$x\log 6 = (x-3)\log 2$$

Notice now that the x we are trying to find is no longer in a power. Multiplying out the brackets

$$x\log 6 = x\log 2 - 3\log 2$$

Rearrange this equation to get the two terms involving x on one side and the remaining term on the other side.

$$3\log 2 = x\log 2 - x\log 6$$

www.mathcentre.ac.uk

© mathcentre May 19, 2003

Factorise the right hand side by extracting the common factor of x.

$$3\log 2 = x(\log 2 - \log 6)$$
$$= x\log\left(\frac{1}{3}\right)$$

using the laws of logarithms. And finally

$$x = \frac{3\log 2}{\log\left(\frac{1}{3}\right)}$$

This value can be found from a calculator. You should check that this equals -1.893 (to 3 decimal places).

Example

Solve the equation $e^x = 17$.

Solution

We could proceed as in the examples above. However note that the logarithmic form of this expression is $\log_e 17 = x$ from which, with the use of a calculator, we can obtain x directly as 2.833.

Example

Solve the equation $10^{2x-1} = 4$.

Solution

The logarithmic form of this equation is $\log_{10} 4 = 2x - 1$ from which

$$2x = 1 + \log_{10} 4$$

$$x = \frac{1 + \log_{10} 4}{2}$$

$$= 0.801 \quad (\text{ to 3 d.p.})$$

Example

Solve the equation $\log_2(4x+3) = 7$.

Solution

Writing the equation in the alternative form using powers we find $2^7 = 4x + 3$ from which $x = \frac{2^7 - 3}{4} = 31.25$

Exercises

1. Solve (a)
$$6^x = 9$$
, (b) $4^{-x} = 2$, (c) $3^{x-2} = 1$, (d) $15^{2x+1} = 7$.

- 2. Solve the equation $\log(5x+2) = 3$.
- 3. Solve the equation $2^{1-x} = 5$.

Answers

1. (a)
$$x = \frac{\log 9}{\log 6}$$
, (b) $x = -\frac{\log 2}{\log 4}$, (c) $x = 2$, (d) $x = \frac{1}{2} \left(\frac{\log 7}{\log 15} - 1 \right)$.
2. $x = \frac{10^3 - 2}{5} = 199.6$. 3. $x = 1 - \log_2 5 = -1.322$ (3 d.p.).