Logs - changing the base

Sometimes it is necessary to find logarithms to bases other than 10 and e. For example, logarithms to the base 2 are used in communications engineering. Your calculator can still be used but you need to apply a formula for changing the base. This leaflet gives this formula and shows how to use it.

A formula for change of base

Suppose we want to calculate a logarithm to base 2. The formula states

$$
\log _{2} x=\frac{\log _{10} x}{\log _{10} 2}
$$

So we can calculate base 2 logarithms using base 10 logarithms obtained using a calculator.

Examples

$$
\begin{gathered}
\left.\log _{2} 36=\frac{\log _{10} 36}{\log _{10} 2}=\frac{1.556303}{0.301030}=5.1699 \text { (correct to } 4 \text { d.p. }\right) \\
\log _{2} 64=\frac{\log _{10} 64}{\log _{10} 2}=\frac{1.806180}{0.301030}=6
\end{gathered}
$$

Check these for yourself.
More generally, for bases a and b,

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

In particular, by choosing $b=10$ we find

$$
\log _{a} x=\frac{\log _{10} x}{\log _{10} a}
$$

Use this formula to check that $\log _{20} 100=1.5372$ (correct to 4 d.p.).

Exercises

1. Find, correct to 3 decimal places, (a) $\log _{2} 15$,
(b) $\log _{2} 56.25$,
(c) $\log _{3} 16$.
2. By writing the expression in logarithmic form, find the number x such that $2^{x}=3.6$.

Answers

1. (a) 3.907 (3 d.p.),
(b) 5.814 (3 d.p.),
(c) 2.524 (3 d.p).
2. $\log _{2} 3.6=x$, and so $x=1.848$ (3 d.p.).
