mathcentre

What is a logarithm ?

Logarithms appear in many applications and familiarity with them is essential. They are used to write expressions involving powers in different forms.

Logarithms

Study the statement

$$
100=10^{2}
$$

In this statement we say that 10 is the base and 2 is the power or index. Logarithms provide an alternative way of writing a statement such as this. We rewrite it as

$$
\log _{10} 100=2
$$

This is read as 'log to the base 10 of 100 is 2 '. These alternative forms are shown in Figure 1.

Figure 1. Note the positions of the different quantities in these two alternative forms.
As another example, since

$$
2^{5}=32
$$

we can write

$$
\log _{2} 32=5
$$

Here the base is 2 and the power is 5 . We read this as 'log to the base 2 of 32 is 5 '.
More generally,

$$
\text { if } \quad a=b^{c}, \quad \text { then } \quad \log _{b} a=c
$$

Exercises

1. Rewrite the following expressions in logarithm form. Do not try to use a calculator.
(a) $3^{2}=9$
(b) $5^{4}=625$
(c) $10^{3}=1000$
(d) $10^{-2}=0.01$
(e) $10^{1}=10$
(f) $2^{1}=2$
(g) $e^{1}=e$
(h) $8^{1}=8$.
2. Rewrite the following expressions in an equivalent form without using logarithms. Do not use a calculator.
(a) $\log _{2} 256=8$
(b) $\quad \log _{10} 10000=4$
(c) $\quad \log _{4} 64=3$
(d) $\log _{10} 0.1=-1$
(e) $\log _{3} 3=1$
(f) $\quad \log _{9} 9=1$
(g) $\log _{8} 1=0$
(h) $\log _{2} 1=0$.

Using a calculator to find logarithms

The only restriction that is placed on the value of the base is that it is a positive real number excluding the number 1. In practice logarithms are calculated using only a few common bases. Most frequently you will meet bases 10 and e. The letter e stands for the number $2.718 \ldots$ and is used because it is found to occur in the mathematical description of many physical phenomena. The number e is called the exponential constant. Your calculator will be able to calculate logarithms to bases 10 and e. Usually the 'log' button is used for base 10 , and the 'In' button is used for base e. ('ln' stands for 'natural logarithm'). Check that you can use your calculator correctly by verifying that

$$
\log _{10} 73=1.8633 \text { (to } 4 \text { decimal places) }
$$

and

$$
\log _{\mathrm{e}} 5.64=1.7299 \text { (to } 4 \text { decimal places) }
$$

You may also like to verify the alternative forms

$$
10^{1.8633}=73 \quad \text { and } \mathrm{e}^{1.7299}=5.64
$$

Occasionally we need to find logarithms to other bases. For example, logarithms to the base 2 are used in communications engineering and information technology. Your calculator can still be used but we need to apply a formula for changing the base. This is dealt with on the leaflet Logs changing the base.

Answers

1. (a) $\log _{3} 9=2$
(b) $\quad \log _{5} 625=4$
(c) $\log _{10} 1000=3$
(d) $\quad \log _{10} 0.01=-2$
(e) $\log _{10} 10=1$
(f) $\log _{2} 2=1$
(g) $\log _{e} e=1$
(h) $\log _{8} 8=1$
2. (a) $2^{8}=256$
(b) $10^{4}=10000$
(c) $4^{3}=64$
(d) $10^{-1}=0.1$
(e) $3^{1}=3$
(f) $9^{1}=9$
(g) $8^{0}=1$
(h) $2^{0}=1$
