LOGARITHMS
 The essentials and the tactics

What is a Logarithm?

As with anything in mathematics, for one operation, there is an inverse operation for it. The Logarithm (Log) is the inverse function of the 10^{x} operation. The Log is another operation in a line of exponential functions, and the properties will be outlined later.

Basic Elements of a Logarithm

Let's establish the basics of the Logarithm function.

$\log _{10} 1000$

The smaller number is the base of the logarithm. Many times the 10 is not written, as this is the default base for a logarithm. The 1000 is actually the answer of an exponent, as you will see below.

$$
\log _{10} 1000=\log 1000
$$

Sometimes, the base of the logarithm is not always a nice "10." There is a formula below to help in working with various bases. It may be a different number or it may be a variable. Note, however, that logarithm bases are never negative.

To properly refer to this function, we say:
"Log base 10 of 1000 "
To solve this, look at the phrase and think of this:

[^0]"10 is the base and 1000 is the answer. What exponent satisfies $10^{x}=1000$?"

Let's see what this phrase looks like as an equation:
$\log _{10} 1000=x$
Recall earlier that the operation 10^{x} is the inverse operation of the logarithm function, so we now have:

$$
\begin{array}{ll}
->10_{10}^{\log _{10}^{1000}} & =10^{x} \\
->1000 & =10^{x} \\
->10^{3} & =10^{x}
\end{array}
$$

Thus $\mathrm{x}=3$
From this calculation, let's draw some conclusions.
1.) This operation is reversible. If you are given $10^{3}=1000$, let 10 be the base of the logarithm and the answer be the exponent, so $\log _{10} 1000=3$ is the opposite of the 10^{x} form.
2.) The general case for switching between 10^{x} and logarithm form is:
For integers a, b, and x in the form $a^{x}=b$, we write, in logarithm form:
$\log _{a} b=x$
This operation is reversible.

Operations with Logarithms

For some base b, and values m and n, we establish the following logarithm operations.

- Multiplication to Addition (Addition Rule)

$$
\log _{b}\left(m^{\star} n\right)=\log _{b} m+\log _{b} n
$$

[^1]EX: $\log _{10}\left(5^{*} X\right)=\log _{10} 5+\log _{10} X$

$$
=0.698970004+\log _{10} X
$$

- Division to Subtraction (Subtraction Rule)
$\log _{b}\left(\frac{m}{n}\right)=\log _{\mathrm{b}} m-\log _{\mathrm{b}} n$
EX: $\log _{10}\left(\frac{10}{x}\right)=\log _{10} 10-\log _{10} X$

$$
=1-\log _{10} X
$$

- Exponent Multiplier (Exponent Rule)
$\log _{b}\left(m^{n}\right)=n^{\star} \log _{b} m$
EX: $\log _{10} 10^{2}=2 * \log _{10} 10$

$$
=2 * 1
$$

$$
=2
$$

(Compare this answer with $\log _{10} 100$)

- Change of Base Formula (for bases other than 10)
$\log _{\mathrm{b}} m=\frac{\log _{10} m}{\log _{10} b}$

EX: $\log _{5} 8=\frac{\log _{10} 8}{\log _{10} 5}$
$=1.292029674$
(Take $5^{1.292029674}$ and see that you get 8)
Now, let's try using these rules in a larger example.
EX: $\quad \log _{10}\left(\frac{a^{2} b}{c^{3}}\right)^{4}=4 \log _{10}\left(\frac{a^{2} b}{c^{3}}\right)$

$$
\begin{aligned}
& =4\left(\log _{10} a^{2} b-\log _{10} C^{3}\right) \\
& =4\left(\log _{10} a^{2}+\log _{10} b-\log _{10} C^{3}\right) \\
& =4\left(2 \log _{10} a+\log _{10} b-3 \log _{10} C\right) \\
& =4 \log _{10} a+4 \log _{10} b-12 \log _{10} C
\end{aligned}
$$

Final Notes

- A major point of logarithms is this: DO NOT
confuse Log with Ln; this is the Natural Logarithm function, which is a completely different function from the standard logarithm.
Here's an example:
$\log _{10} 100=2$
$\operatorname{Ln} 100=4.605170186$
- NEVER use a negative number in a logarithm.

There is no exponent that equals a negative number.
Example: Don't say $\log _{10}(-100)=$ NONE.
When rearranging it, we have $10^{x}=-100$, which is not possible.

- It is important to note that the logarithm of ANY base of 1 is $0\left(\log _{b} 1=0\right)$. This is simply because any number raised to the 0 exponent is 1 .

[^2]
[^0]: ${ }^{1}$ Copyright 2003 - Steve Saffell - Center for Academic Support - (816)271-4524

[^1]: ${ }^{2}$ Copyright 2003 - Steve Saffell - Center for Academic Support - (816)271-4524

[^2]: ${ }^{3}$ Copyright 2003 - Steve Saffell - Center for Academic Support - (816)271-4524
 ${ }^{4}$ Copyright 2003 - Steve Saffell - Center for Academic Support - (816)271-4524

