

www.MathWorksheetsGo.com
On Twitter: twitter.com/engagingmath
On FaceBook: www.mathworksheetsgo.com/facebook

I. Model Problems.
II. Practice
III. Challenge Problems
IV. Answer Key

Web Resources

Inverse Functions

www.mathwarehouse.com/algebra/relation/inverse-of-function.php

Functions and Relations

www.mathwarehouse.com/algebra/relation/

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php.

Graph Paper Maker (free): www.mathworksheetsgo.com/paper/

Online Graphing Calculator(free): www.mathworksheetsgo.com/calculator/

Inverse Functions

The function g(x) are inverses of each other f(x) if g(f(x)) = x and g(f(x)) = x.

The inverse of the function f(x) is indicated with the notation $f^{-1}(x)$, read f inverse (this notation does **not** mean $\frac{1}{f(x)}$).

I. Model Problems

In this example we will find the inverse of a discrete function for a given as a list of ordered pairs.

Example 1: If
$$f = \{(3,2), (4,-6), (-2,11), (5,5)\}$$
 find $f^{-1}(x)$.
When finding the inverse exchange x and $f = \{(3,2), (4,-6), (-2,11), (5,5)\}$ y . The ordered pairs (x,y) become (y,x) . $f^{-1} = \{(2,3), (-6,4), (11,-2), (5,5)\}$
Answer: $f^{-1} = \{(2,3), (-6,4), (11,-2), (5,5)\}$

In these examples we will find the inverse of functions given as an equation.

Example 2: If
$$f(x) = 3x + 10$$
 find $f^{-1}(x)$. Write function in terms of y.

When finding the inverse exchange *x* and *y*. Solve for *y*.

Rewrite as
$$f^{-1}(x)$$
.

Answer:
$$f^{-1}(x) = \frac{x-10}{3}$$

Example 3: If
$$f(x) = \sqrt{x + 12}$$
 find $f^{-1}(x)$. Write function in terms of y.

When finding the inverse exchange *x* and *y*. Solve for *y*. Square both sides of the equation.

Rewrite as
$$f^{-1}(x)$$
.
Answer: $f^{-1}(x) = x^2 - 12$

$$f(x) = 3x + 10$$

$$y = 3x + 10$$

$$x = 3y + 10$$

$$-10 = -10$$

$$\frac{x - 10}{3} = \frac{3y}{x}$$

$$\frac{x - 10}{3} = y$$

$$f^{-1}(x) = \frac{x - 10}{3}$$

$$f(x) = \sqrt{x + 12}$$

$$y = \sqrt{x + 12}$$

$$x = \sqrt{y + 12}$$

$$x^{2} = (\sqrt{y + 12})^{2}$$

$$x^{2} = y + 12$$

$$-12 \qquad -12$$

$$x^{2} - 12 = y$$

$$f^{-1}(x) = x^{2} - 12$$

II. Practice Problems

Solve.

1. Is $g(x) = \frac{1}{2}x - 2$ the inverse of f(x) = 2x + 4? Justify your answer.

2. Is g(x) = 4x + 24 the inverse of $f(x) = \frac{1}{4}x + 6$? Justify your answer.

3. Is $h(x) = x^2 - 2$ the inverse of $g(x) = \sqrt{x+2}$? Justify your answer.

4. Is $h(x) = x^2$ the inverse of $g(x) = \sqrt{x}$? Justify your answer.

Find the inverse of the given function.

5.
$$f = \{(1,3), (2,-5), (3,6)\}$$

6.
$$g = \{(-4,1), (-3,2), (0,0), (1,10)\}$$

7.
$$h = \{(-1, -1), (0,0), (3,3), (6,6)\}$$

$$\begin{array}{c|cc}
x & y \\
\hline
-3 & -2 \\
\hline
-1 & 2 \\
\hline
0 & 4 \\
\hline
1 & 6 \\
\hline
3 & 8
\end{array}$$

$$\begin{array}{c|cc}
x & y \\
\hline
-3 & 0 \\
\hline
1 & 2 \\
\hline
6 & 3 \\
\hline
13 & 4 \\
\hline
22 & 5
\end{array}$$

$$11. g(x) = -4x + 5$$

13.
$$f(x) = \frac{3x+4}{7}$$

$$15. g(x) = -3x - 10$$

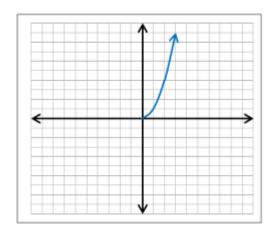
17.
$$g(x) = \sqrt{2x + 8}$$

19.
$$f(x) = 4\sqrt{x}$$

$$19. f(x) = 4\sqrt{x}$$

20. Graph the inverse of
$$f(x) = 4x - 12$$
.

12.
$$h(x) = \frac{2}{5}x + 6$$


$$14. g(x) = \frac{1}{4}x + 6$$

$$16. f(x) = \sqrt{x-4}$$

$$18. h(x) = \sqrt{3x} - 6$$

Challenge Problems

- 1. Graph the inverse of $f(x) = \sqrt{x+1}$ (Hint: identify the domain of f(x)).
- 2. Graph the inverse of the function graphed below.

scale of x and y-axes is 1.

- 3. Find the inverse of the function $f(x) = \sqrt[5]{x+4}$.
- 4. Find the error in the student's work for the following problem:

If
$$f(x) = \frac{x-7}{x}$$
, find $f^{-1}(x)$.

Given
$$f(x) = x - 7$$

Step 1
$$y = \frac{x-7}{x}$$

Step 2
$$x = \underbrace{y-7}_{}$$

Given
$$f(x) = \frac{x-7}{x}$$

Step 1 $y = \frac{x-7}{x}$
Step 2 $x = \frac{y-7}{x}$
Step 3 $x(x) = (\frac{y-7}{x})x$
Step 4 $x^2 = y-7$
 $+7$
Step 5 $x^2 + 7 = y$

Step 4
$$x^2 = y - 7$$

$$Step 5 \quad x^2 + 7 = y$$

Step 6
$$f^{-1}(x) = x^2 + 7$$

5. Find the inverse of the function $f(x) = \frac{x-2}{x}$.

IV. Answer Key

1. yes;
$$g(f(x)) = g(2x+4) = \frac{1}{2}(2x+4) - 2 = x + 2 - 2 = x$$
;
 $f(g(x)) = g(\frac{1}{2}x - 2) = 2(\frac{1}{2}x - 2) + 4 = x - 4 + 4 = x$

2. no;
$$g(f(x)) = g(\frac{1}{4}x + 6) = 4(\frac{1}{4}x + 6) + 24 = x + 24 + 242 = x + 48 \neq x$$

3. yes; $h(g(x)) = h(\sqrt{x+2}) = (\sqrt{x+2})^2 - 2 = x + 2 - 2 = x$;

3. yes;
$$h(g(x)) = h(\sqrt{x+2}) = (\sqrt{x+2})^2 - 2 = x+2-2 = x$$
; $g(h(x)) = g(x^2-2) = \sqrt{(x^2-2)+2} = \sqrt{x^2} = x$

4.
$$yes; h(g(x)) = h(\sqrt{x}) = (\sqrt{x})^2 = x; g(h(x)) = g(x^2) = \sqrt{x^2} = x$$

5.
$$f^{-1} = \{(3.1), (-5,2), (6,3)\}$$

6.
$$g^{-1} = \{(1,-4),(2,-3),(0,0),(10,1)\}$$

7. $h^{-1} = \{(-1,-1),(0,0),(3,3),(6,6)\}$

7.
$$h^{-1} = \{(-1, -1), (0, 0), (3, 3), (6, 6)\}$$

$$\begin{array}{c|cc}
x & y \\
-2 & -3 \\
\hline
2 & -1 \\
4 & 0 \\
\hline
6 & 1 \\
8 & 3
\end{array}$$

$$\begin{array}{c|cc}
x & y \\
\hline
0 & -3 \\
2 & 1 \\
3 & 6 \\
4 & 13 \\
5 & 22 \\
\end{array}$$

$$10. f^{-1}(x) = \frac{x+7}{3}$$

11.
$$g^{-1}(x) = \frac{x-5}{4}$$

11.
$$g^{-1}(x) = \frac{x-5}{4}$$

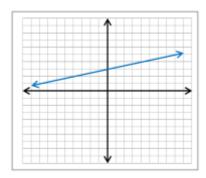
12. $h^{-1}(x) = \frac{5}{2}x - 15$
13. $f^{-1}(x) = \frac{7x-4}{3}$

13.
$$f^{-1}(x) = \frac{7x-4}{3}$$

$$14. g^{-1}(x) = 4x + 24$$

14.
$$g^{-1}(x) = 4x + 24$$

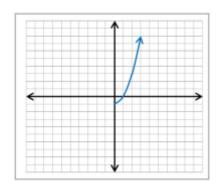
15. $g^{-1}(x) = \frac{x+10}{3}$
16. $f^{-1}(x) = x^2 - 4$


16.
$$f^{-1}(x) = x^2 - 4$$

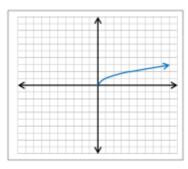
17.
$$g^{-1}(x) = \frac{x^2 - 8}{x^2 - 8}$$

10.
$$f'(x) = x^{-1}$$

17. $g^{-1}(x) = \frac{x^2 - 8}{2}$
18. $h^{-1}(x) = \frac{x^2 + 12x + 36}{3}$


19.
$$f(x) = \frac{x^2}{16}$$

20.


scale of x and y-axes is 1.

Challenge Problems

scale of x and y-axes is 1.

2.

scale of x and y-axes is 1.

- 3. $g^{-1}(x) = x^3 4$ 4. Step 2; replace both x with y 5. $f^{-1}(x) = \frac{-2}{x-1}$