
Geometric Series 
 
     Before we define what is meant by a series, we need to introduce a related topic, that 
of sequences. Formally, a sequence is a function that computes an ordered list. Suppose 
that on day 1, you have 1 dollar, and every day you double your money. Then the 
function f(n) = 2n generates the sequence 
 
   1, 2, 4, 8, 16, 32, …, 
 
     when n = 1, 2, 3, 4, 5, 6, … This list represents the amount of dollars you have after n 
days. Note: The use of “…” is read as “and so on”. 
 
     The individual entries in a sequence are called the terms of the sequence. In our 
discussion, we are going to assume that the terms in a particular sequence are real 
numbers. 
 
     Sequences can be grouped into two large classes based upon the number of terms they 
include. An infinite sequence is a function that has the set of natural numbers as its 
domain. As the name implies, it contains an infinite number of terms. In the opening 
example, the use of the “…” without some number on the end implies that the sequence 
continues indefinitely, following the prescribed pattern. 
 
     Of course, there is an inherent problem with assuming that money can be doubled 
forever. Instead, it makes sense to talk about doubling money for a certain number of 
days. Say, for n = 1, 2, 3, 4, 5, 6, and 7. In that case, the sequence generated would be 
called a finite sequence. Its domain is equal to a finite set of natural numbers. (In this 
case, D = {1, 2, …, 7}.) 
 
     A common notation for sequences is let an = f(n). With this notation, we say that an is 
the nth term in the sequence. 
 
Example 1: 
 
     Write out the first five terms a1, a2, a3, a4 and a5 of the following sequences.  
 

(a) ( 1)n  na  

(b)  2
sinna n  

(c) 2 5  na n 

(d)  12(3)n
na 
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Solution: 
 

(a) a1 = (-1)1 = -1,    a2 = (-1)2 = 1,    a3 = (-1)3 = -1,    a4 = (-1)4 = 1,    a5 = (-1)5 = -1. 
 

(b)    1 2 2
sin (1) sin 1a     ,       2 2

sin (2) sin 0a     , 

   3
3

2 2
sin (3) sin 1a      ,       4 2

sin (4) sin 2 0a     , 

   5
5

2 2
sin (5) sin 1a     . 

 
(c) ,    ,    1 2(1) 5 3a     2 2(2) 5 1a     3 2(3) 5 1a    ,    , 4 2(4) 5 3a   

5 2(5) 5 5a    . 

 
(d)  ,    1 1 0

1 2(3) 2(3) 2a   2 1 1
2 2(3) 2(3) 6a    ,    3 1 2

3 2(3) 2(3) 18a    , 
4 1 3

4 2(3) 2(3) 54a    ,    . 5 1 4
5 2(3) 2(3) 162a   

 
     It is worth noting that using these formulas we would easily compute the 1,000th term 
in the sequence. We would only need to plug in n = 1000. 
 
     Some sequences are not written in terms of an explicit function like those above. 
Instead, they may be defined recursively, and hence are called a recursive sequence. 
That is, each term after the first few terms are defined in terms of what has come before it. 
 
 
     If it happens that the terms in our sequence are multiplies of each other (as was the 
case in Example 1d), then we say that we have a geometric sequence. 
 
     In Example 1d, the multiple between each term was 3. We call this number the 
common ratio and it is usually denoted by an r. 
 
     A geometric sequence can be defined recursively based on the common ratio between 
terms. That is, we have the relationship an = ran – 1. 
 
     If we know the starting term of our sequence, a1, since there is a common ratio r 
between subsequent terms, we can find an explicit formula for the nth term of the 
sequence. Let us work out a few terms and try to discover the underlying pattern. 
 
     a2 = ra1 
     a3 = ra2 = r(ra1) = r2a1 

     a4 = ra3 = r(ra2) = r(r(ra1)) = r3a1 
 
     In general, we have 
      
 

2 



The nth term of a Geometric Sequence 
 
In a geometric sequence with first term a1 and common ratio r, the nth term, an, is 
given by 
 

an = a1r
n – 1 

 
 
Example 2: 
 
     Find a formula for the geometric sequence given by 2, 1, 1/2, 1/4, 1/8, … 
 
Solution: 
 
     The first term is 2, so that is a1. Notice that the common ratio between subsequent 
terms is 1/2 . So, we have that r = 1/2. Thus, an = 2(1/2)n – 1. 
 
 
Example 3: 
 
     Find a general term an for the following geometric series if a2 = 4 and a4 = 64. 
 
Solution: 
 
     We know that a2 = a1r and a4 = a1r

3. So, if 4 = a1r and 64 = a1r
3, we can divide the 

two equations to get 64/4 = (a1r
3)/(a1r) = r2, and we see that r = 4. Plugging that into the 

first equation, we 4 = a1(4), so a1 = 1. Thus, an = 1(4)n – 1 = 4n – 1. 
 
 
     Now that we have established what is meant by a sequence and in particular a 
geometric series, we can turn our attention to a series. 
 
     Recall, a sequence is a function that computes an ordered list. A series, on the other 
hand, is the summation of elements generated by a sequence. 
 
     Let us return to our example with doubling money that we opened with. That is, 
suppose that on day 1, you have 1 dollar, and every day you double your money. Let’s 
change the scenario slightly. Suppose on day 1 you have 1 dollar, but every day you are 
given twice the amount that you had the previous day. The function that specifies how 
much money you receive on the nth days is given by f(n) = 2n. This generates the 
sequence 
 
   1, 2, 4, 8, 16, 32, …, 
 
     when n = 1, 2, 3, 4, 5, 6, … Suppose our interest is how much money you have after n 
days. (Remember, the above values are only how much you receive on a particular day. 
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You still get to keep your money from the previous days!) We would need to sum the 
values of our sequence up until day n to answer this question. 
 
     As was the case with sequence, series can be grouped into two large classes based 
upon the number of terms they include. An infinite series is the summation of the terms 
in an infinite sequence. A finite series is the summation of the terms in a finite sequence. 
We shall consider both types of series. 
 
     We define a geometric series as the summation of the terms in a geometric sequence. 
 
     We can use the formula for the nth term of the geometric sequence to develop a 
formula for the sum of the first n terms in a geometric sequence.  
 
     Recall, if a1 was the first term in the geometric sequence with a common ratio of r, 
then the formula for the nth term in a geometric sequence is given by an = a1r

n – 1. 
 

     Let Sn denote the sum of the first n terms in a geometric sequence. Then we have: 
 

     Sn = a1 + a1r + a1r
2 + … + a1r

n – 2 + a1r
n – 1 

 
     Multiplying this equation by r, we have 
 
     rSn = a1r + a1r

2 + … + a1r
n – 1 + a1r

n 
 
     Subtracting this equation from Sn, we have 
 
     Sn – rSn = (a1 + a1r + a1r

2 + … + a1r
n – 2 + a1r

n – 1) – (a1r + a1r
2 + … + a1r

n – 1 + a1r
n) 

                   = a1 – a1r
n, 

 
     since all of the middle terms cancelled out. We can factor a Sn out of the terms on the 
left-hand side and a a1 out of the terms on the right-hand side to get Sn(1 – r) = a1(1 – rn). 

 
And so, we have that 
      

Sum of the first n terms of a Geometric Sequence 
 
If a geometric sequence has first term a1 and common ratio r, then the sum of the 
first n terms is given by 
 

1

1

1

n

n

r
S a

r

 
   

 ,     provided r ∫ 1 

 
     Notice that we need to make the assumption that r ∫ 1, since we divided both sides by 
1 – r, would be 0 if r = 1. If it were the case that r = 1, then our geometric series actually 
reduces to an arithmetic series with d = 0. 
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Example 4: 
 
     Find the sum for the given values of n. 
 
     3 – 6 + 12 – 24 + 48 – … + 3(-2)n – 1; n = 4, 7, and 10. 
 
Solution: 
 
     This is a geometric series with first term a1 = 3 and common ratio r = -2. 
 

     
4

4

1 ( 2)
3 15

1 ( 2)

  
    

S ,    
7

7

1 ( 2)
3 129

1 ( 2)
S

  
    

,    
10

10

1 ( 2)
3 1023

1 ( 2)
S

  
    

  

 
 
Example 5: 
 
     Find the following sum: 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 
 
Solution: 
 
     This is a geometric series with the first term a1 = 1 and common ratio r = 2. We are 

adding up the first 8 terms. Thus, we have 
8

8

1 (2)
1 255

1 2
S

 
   

. 

 
 
     So far, we have restricted our attention to finite series. There are some infinite 
geometric series for which the sum is a finite number. The ancient Greek Zeno first 
proposed a variant of the following problem. 
 
     Suppose a person wants to walk through a forest that is one mile wide. Suppose he 
walks half the distance in an hour. Then in the next hour, walks half of the remaining 
distance, and continues in this manner. How far will the person have walked? How long 
will it take the person to leave the forest? 
 
     The distance traveled by the person is described by an infinite series. Namely, 

 
1 1 1 1

...
2 4 8 16
     

 
     Intuition tells us that the person will walk 1 mile (the total width of the forest). But 
since the person walks slower and slower, it will take an infinite amount of time to travel 
that distance. So, the person never actually leaves the forest! 
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     Looking at our formula for the finite geometric series, notice that if |r| < 1, then as n 
gets large, rn approaches 0. That is, if |r| < 1, then lim 0n

n
r


 . Thus, we have 

 

1
1 1

1 1 0
lim lim

1 1

n

n
n n

ar
S a a

r r 

        1 r


    
. 

 

This is summarized as 
      

Sum of an infinite Geometric Sequence 
 
The sum of the infinite geometric sequence with first term a1 and common ratio r 
is given by  
 

1

1

a
S

r



,     provided |r| < 1. 

 
If |r| ¥ 1, then the sum either does not exist or is infinite. 

 
 
Example 6: 
 

     Show that the sum of the infinite geometric sequence 
1 1 1 1

...
2 4 8 16
     equals 1. 

 

Solution: 
 
     The first term in the sequence is a1 = 1/2 and the common ratio is r = 1/2. And since 

|1/2| < 1, we can use the formula above to conclude that 
1 1

2 2
1 1

2 2

1
1

S   


. 

 

 
     We can use infinite series to expression fractions as summations. This is done by 
rewriting the fraction with a denominator of 1 – 0.1, so our common ratio will be 0.1, 
which corresponds to one decimal place. 
 
 
Example 7: 
 
     Write 2/3 as an infinite geometric series. 
 
Solution: 
 

     Observe that 
2 6 0.6

3 9 1 0.1
 


. This is in the form an infinite geometric series with a1 = 

0.6 and r = 0.1. Thus, we have that 
2

0.6 0.06 0.006 ...
3
     
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