Section 4.2 Injections, Surjections, and Bijections

Purpose of Section: To introduce three important types of functions: injections (one-to-one), surjections (onto), and bijections (both one-to-one and onto). These properties relate to important concepts such as the inverse of a function and isomorphisms between sets.

Injections, Surjections, and Bijections

As in any important collection of objects, functions have been classified in many subcategories (differentiable, continuous, increasing, integrable, measurable, …) depending on a wide variety of properties, One basic classification, which relates to how a function maps points from its domain into its codomain is that of **injections** (one-to-one), **surjections** (onto), and **bijections** (one-to-one and onto).

Injection, Surjection and Bijection

Three Important Classifications of Functions

• Surjection (onto): Let $f: A \to B$. If the set of images f(A) is equal to the codomain B (i.e. f(A) = B) the function f is called a surjection (or simply onto) and we say "f is from A onto B." In other words, for each $y \in B$ there exists an $x \in A$ (called a pre-image of y) such that f(x) = y

• Injection (1-1): Let $f: A \to B$. If for each $y \in f(A)$ there exists a *unique* (pre-image) $x \in A$ such that f(x) = y, the function f is called an injection (or simply **one-to-one**¹). More operational forms of this definition are a function is 1-1 if and only if:

¹ Often one simply writes 1-1 to denote a one-to-one function.

direct form of 1-1: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ contrapositive form of 1-1: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

• Bijection (1-1 correspondence): If $f: A \rightarrow B$ is both an injection and surjection, then f is called a bijection (or one-to-one correspondence).

Example 1 (Injections, Surjections, and Bijections) The graphs in Figure 1 illustrate typical surjections, injections, and bijections from \mathbb{R} to \mathbb{R} . Note that the graph of 1-1 functions intersect any horizontal line at most once.

Figure 1

Example 2 (Injection)

Show $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^2$ is an injection (i.e. a one-to-one mapping).

Proof:

Some people would say simply lining up the natural numbers against their squares, as is done in Table 1 is a pretty convincing argument that f is a 1-1 mapping, but we present a more formal proof.

п	1	2	3	4	•••	n	
$f(n) = n^2$	1	4	9	16	•••	n^2	
Table 1							

We show $m \neq n \Rightarrow f(m) \neq f(n)$ by proving its contrapositive $f(m) = f(n) \Rightarrow m = n$. We write

$$f(m) = f(n) \Longrightarrow m^{2} = n^{2}$$
$$\Longrightarrow m^{2} - n^{2} = 0$$
$$\Longrightarrow (m - n)(m + n) = 0$$
$$\Longrightarrow m = n \text{ or } m = -n$$

But m = -n is not possible since we are assuming m, n are positive numbers. Hence, we conclude m = n and so f is 1-1 on \mathbb{N} .

Example 3 (Surjection)

Determine if the functions $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 1$ is a surjection.

Proof: We show for any $y \in \mathbb{R}$ there exists an $x \in \mathbb{R}$ such that $y = x^3 + 1$. Solving for x gives $x = \sqrt[3]{y-1}$. Hence, for any value of y this value of x maps into y. Hence, f maps \mathbb{R} onto \mathbb{R} .

Example 4 (Counterexample)

Is the function $f: \mathbb{R} \to \mathbb{R}$ defined by $y = x^2 + 2x$ a surjection?

Solution:

No. The number y = -2 has no preimage since you can easily show $x^2 + 2x = -2$ has only complex solutions.

Example 5 (Map from \mathbb{R}^2 onto \mathbb{R}^2) Show that the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix}$$

is a bijection of the plane onto the plane.

Solution

Surjection: Letting

$$y_1 = x_1 + x_2$$

 $y_2 = x_1 - x_2$

we prove there exists a point $(x_1, x_2) \in \mathbb{R}^2$ which maps onto (y_1, y_2) by showing the system of equations

$$x_1 + x_2 = y_1$$
$$x_1 - x_2 = y_2$$

has a solution x_1, x_2 for arbitrary y_1, y_2 . Solving these equations, we get

$$x_{1} = \frac{1}{2}(y_{1} + y_{2})$$
$$x_{2} = \frac{1}{2}(y_{1} - y_{2})$$

Hence T maps \mathbb{R}^2 onto \mathbb{R}^2 .

Injection: To show T is an injection, we set the images

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} x_1' + x_2' \\ x_1' - x_2' \end{pmatrix}$$

equal and show their respective preimages (x_1, x_2) and (x'_1, x'_2) are equal (this is the contrapositive form of 1-1). Doing this we get

$$x_1 + x_2 = x'_1 + x'_2$$

$$x_1 - x_2 = x'_1 - x'_2$$

or

$$(x_1 - x_1') - (x_2 - x_2') = 0$$

(x_1 - x_1') + (x_2 - x_2') = 0

which reduces to $x_1 = x'_1$, $x_2 = x'_2$. Hence *T* is an injection. Since *T* is both an injection and surjection, it is a bijection.

Inverse Functions

In arithmetic some numbers have inverses. For example -3 is the additive inverse of +3 since 3+(-3)=0. Some functions also have inverses in the sense that the inverse of a function "undoes" the operation of the function.

Definition: Function Inverse

If $f: A \to B$ is an injection, then for each $y \in f(A)$ in the range of A, the equation f(x) = y has a *unique* solution $x \in A$. This yields a new function $f^{-1}: f(A) \to A$, defined by

$$x = f^{-1}(y).$$

for all $y \in f(A)$. This function is called the **inverse** of f on f(A).

If f is *both* an injection *and* onto the codomain B, then the inverse function maps $f^{-1}: B \to A$.

In the language of relations, we would define the inverse function of $f \in A \times B$ by $f^{-1} = \{(y, x) \in B \times A : (x, y) \in f\}.$

Example 6 (Inverse Function)

The function $f:[0,\infty) \rightarrow [1,\infty)$ defined by

$$f(x) = 1 + x^2, \quad x \ge 0$$

is both 1-1 and onto and hence has an inverse $f^{-1}:[1,\infty)\to[0,\infty)$. Find and draw the graph of this inverse.

Solution Solving the equation

$$y = 1 + x^2$$

for $x \ge 0$ in terms of y, we find the unique value

Injections ...

$$x=+\sqrt{y-1}$$
 , $y\geq 1$

thus we would write

$$f^{-1}(y) = \sqrt{y-1}, y \ge 1.$$

The graphs of f and f^{-1} are drawn in Figure 2. Note that the graph of f^{-1} is the reflection of the graph of f through the 45 degree line y = x.

Historical Note: The study of functions changed qualitatively with the ideas of Italian mathematician Vito Volterra (1860–1940) who introduced the idea of **functions of functions** (i.e. functions whose arguments were themselves functions). Later French mathematician Jacques Hadamard (1865–1963) named these types of functions **functionals**, and Paul Le'vy (1886–1971) gave the name **functional analysis** to the study of functions interpreted as points in a space, not unlike points in the plane.

One of the most important inverse functions is the inverse of the Fourier transform.

Function $f(x)$ Inverse $f^{-1}(y)$ Comments
--

x + a	y-a					
mx	y / m	$m \neq 0$				
1/ x	1/ y					
x^2	\sqrt{y}	$x, y \ge 0$				
x^3	$\sqrt[3]{y}$	no restriction on <i>x</i> , <i>y</i>				
e^{x}	ln y	<i>y</i> > 0				
a^{x}	$\log_a y$	a > 0, y > 0				
$x^{a/b}$	$x^{b/a}$	$x \ge 0$				
tan x	$\tan^{-1} y$	$-\frac{\pi}{2} < x < \frac{\pi}{2}$				
Common Inverses						

Common Inverses Table 2

Example 7 (Inverse Fourier Transform)

The Fourier transform $\Im: x \to X$ maps integrable² function x = x(t) of t (normally time) to a function $X = X(\omega)$ of frequency ω by the equation

$$X(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$$

called the Fourier transform of x(t). One can verify that the inverse³ of the transform is

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} d\omega$$

If the transform were followed by the inverse transform, one would have

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt \right] e^{i\omega t} d\omega .$$

 $^{^{2}}$ The precise domain of the Fourier transform is all *Lebesgue* integrable functions. Many readers of this book will be introduced to the Lebesgue integral later in a course in real analysis.

³ The Fourier transform maps functions into functions. Functions are *equivalent* if they differ on a set of "measure zero" and functions in different equivalence classes are considered different functions..

Problems

- 1. Given the following three pairs of sets
 - $\{1,2,3\}$ and $\{4,5,6\}$
 - \mathbb{N} and \mathbb{N}
 - \mathbb{R} and \mathbb{R}

For each of the above pairs of functions find four functions f_1, f_2, f_3, f_4 from the first set to the second set such that

- a) f_1 is neither 1-1 or onto.
- b) f_2 is 1-1 but not onto.
- c) f_1 is onto but not 1-1.
- d) f_1 is both 1-1 and onto.
- 2. Find examples of the following functions f.
 - a) f maps \mathbb{R} to $\{1, 2, 3\}$
 - b) $f \text{ maps } \mathbb{N} \text{ to } \mathbb{R}$
 - c) f maps $\mathbb{R} \times \mathbb{R}$ to \mathbb{R}
 - d) $f \text{ maps } \mathbb{R} \text{ to } \mathbb{R} \times \mathbb{R}$
 - e) $f \text{ maps } \{a, b, c\} \text{ to } [0, 1]$

3. (Injections, Surjections, and Bijections) Which of the following functions are intective, surjective, and bijective on their respective domains. Take the domains of the functions as those values of x for which the function is well-defined.

a) $f(x) = x^3 - 2x + 1$

b)
$$f(x) = \frac{x+1}{x-1}$$

c)
$$f(x) = \begin{cases} x^2 & x \le 0\\ x+1 & x > 0 \end{cases}$$

d)
$$f(x) = \frac{1}{x^2 + 1}$$

4. (Inverse Function) For the function

Section 4.2

$$f:(1,\infty)\to(0,1)$$

defined by

$$f(x) = \frac{x-1}{x+1}, x > 1$$

- a) Draw the graph of the function
- b) Prove that the function is 1-1.
- c) Find the inverse of the function.
- d) Find the domain and range of the inverse function.
- e) Draw the graph of the inverse function.

5. (Function as Ordered Pairs) Given the function $f:\{1,2,3\} \rightarrow \mathbb{N}$ defined by $f=\{(1,3),(2,5),(3,1)\}$:

- a) Is f = 1-1?
- b) Is f onto?
- c) What is the range of f?
- 6. (Trick Question) If f maps \mathbb{R} onto \mathbb{R} and if f(1) = 2 then find
 - a) $f^{-1}(2)$
 - b) $f^{-1}(f(3))$
 - c) $f(f^{-1}(8))$

7. (Hmmmmmmm) For what value of the exponent $n \in \mathbb{N}$ is the function $f(x) = x^n$ an injection?

8. (Well-Defined Functions) Let a and b denote real numbers. Do the following defined well-defined functions?

- a) f(a+b)=b
- b) $f(a+b) = \sin(a+b)$
- c) f(a+b) = a+2b
- d) f(a+b) = ab

9. (Finding Domains) Given the function $f(x) = x^3 - x$ from the reals to the reals, find a domain A so that f is a bijection.

10. (Prove or Find a Counterexample) Is it true that if a function is 1-1, then its inverse is also 1-1? If so prove it, if not find a counterexample.