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SECTION A (Module 1)

Answer BOTH questions.
1. (a) Without using calculators, find the exact value of
i) (V75 + V12) - (V75 — V12)° (3 marks]
1 3 1
iy 27 x 9° x 81° . [3 marks]
(b) The diagram below, not drawn to scale, represents a segment of the graph of the function

AX)=x+mx*+nx+p

where m, n and p are constants.

J(x)

> x
Find
(1)  the value of p [2 marks]
(11)  the values of m and » [4 marks]
(111)  the x-coordinate of the point Q. [2 marks]
(¢) (1) By substituting y = log x, or otherwise, solve, for x, the equation
Viegx = 1og2\/? . |6 marks]
(11)  Solve, for real values of x , the inequality
x*—|x|-12<0. [5 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
02134020/CAPE 2011



2, (a) The quadratic equation x* — px + 24 =0, p € R, has roots o and p.

(i)  Express in terms of p

a) o+ P [1 mark |
by @ + B~ 4 marks]
(ii)  Given that o® + * = 33, find the possible values of p. [3 marks]

(b) The function f(x) has the property that
A2x +3) = 2fx)+3;°x €R.

If A0) = 6, find the value of

(1)~ A3) [4 marks]
(i) it 9) [2 marks]
(11)  A-3). [3 marks]

(c) Prove that the product of any two consecutive integers k£ and & + 1 1s an even integer.
[2 marks]
(d) Prove, by mathematical induction, that n (#> + 5) is divisible by 6 for all positive
Integers #. |6 marks]|

Total 25 marks
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SECTION B (Module 2)

Answer BOTH questions.

3. (a) (1) Leta=gitajandb= bi+bjwith|a|=13and|b|=10. Find the value of
(a+b).(a—Db). [5 marks]
(11) If 2b —a = 11i, determine the possible values of a and b. |5 marks]

(b) The line L has equation x —y + 1 = 0 and the circle C has equation x* + y* =2y — 15 =0.
(1)  Show that L passes through the centre of C. [2 marks]
(11)  If L intersects C at P and Q, determine the coordinates of P and Q0.  [3 marks]

(111)  Find the constants a, b and ¢ such that x = b + a cos # and y = ¢ + g sin 4 are
parametric equations (in parameter 0) of C. [3 marks]

(1v)  Another circle C, with the same radius as C, touches L at the centre of C. Find

the possible equations of C,.
|7 marks]

Total 25 marks

4. (a) By using x = cos’6, or otherwise, find all values of the angle 8 such that
8cos*@—10cos’+3=0,0<6<m. [6 marks]
(b) The diagram below, not drawn to scale, shows a rectangle PORS with sides 6 cm and
8 cm 1nscribed in another rectangle ABCD.
A 0 B
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(1)  The angle that SR makes with DC is 6. Find, in terms of 6, the length of the side
BC. [2 marks]

(11)  Find the value of 6 1f | BC | =7 cm. [S marks]

(i11)  Is 15 a possible value for | BC'|? Give a reason for your answer.  [2 marks]

(c) (i)  Show that 1;202529 ~ tan 6. [3 marks]

(11)  Hence, show that

l—-cosd46 _

a) 40 tan 2 6. [3 marks]
l-cos660 _

b) 7 tan 3 6. |2 marks]

(111)  Using the results in (¢) (1) and (11) above, evaluate

2. (tan r @ sin 2r 6 + cos 2r 6)
r=1
where » 1s a positive integer. |2 marks]

Total 25 marks
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SECTION C (Module 3)

Answer BOTH questions.

. [im x>+ 5x+6
>, (a) Find s ye— [4 marks]
(b) The function fon R 1s defined by
| P+ 1 if x>2
) =1 bx+1if x<2.

Determine

(1) A2) [2 marks]
[im
5 I 2 marks
() 5 A l ]
(111) fim f(x) in terms of the constant b [2 marks]
' xX—2

(1iv)  the value of » such that fis continuous at x = 2. [4 marks]

(¢) The curve y = px° + gx° + 3x + 2 passes through the point 7 (1, 2) and its gradient at 7
is 7. The line x = 1 cuts the x-axis at M, and the normal to the curve at 7 cuts the x-axis

at V.

Find
(1) the values of the constants p and ¢ |6 marks]
(11)  the equation of the normal to the curve at 7 [3 marks]

(111)  the length of MN.
[2 marks]

Total 25 marks
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(a) The diagram below, not drawn to scale, is a sketch of the section of the function
Ax) =x (x> — 12) which passes through the origin O. 4 and B are stationary points on the
curve.

Y
A
A

f(x) =x(x* —12)

- : = X
O
B
Find
(1)  the coordinates of each of the stationary points 4 and B |8 marks]

(i)  the equation of the normal to the curve f{x) = x (x* — 12) at the origin, O

[2 marks]
(111)  the area between the curve and the positive x-axis. |6 marks]
(b) (1)  Use the result
J. f(.x)dfC:J. f(a—x)dx,a>0,
0 0
T T
to show that j X sin x dx =J (T —x) sin x dx. |2 marks]
0 0
(11)  Hence, show that
a) jnxsinxdx=njn Sinxdx—J.nxsinxdr |2 marks]
0 0 0
T .
b) j x sin x dx = . [S marks]
0
Total 25 marks
END OF TEST
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