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SECTION A (Module 1)

Answer BOTH questions.

(a) Find the values of the constant p such that x — p is a factor of
x)=4x*-Cp+2)x*—(p*—1)x + 3. [5 marks]
(b) Solve, for x and y, the simultaneous equations
log(x—1)+2logy=2log3
log x + log y = log 6. : [8 marks]

(¢) Solve, for x € R, the inequality

2X-0 559 (5 marks]
X i
(d) By using y = 2%, or otherwise, solve
=32 ) +8=0. [7 marks]
Total 25 marks

GO ON TO THE NEXT PAGE

— - — — — .



2. (a) (1) UsethefactthatS = Xr=—n(n+ 1) to express

1
r=1 2

2n
S, = 2 r in terms of x. [2 marks]

r=1

(1)  Find constants p and g such that

S =8 =pn-+on [S marks]
(1)  Hence, or otherwise, find n such that

S, -8 =260. = [5 marks]

(b) The diagram below (not drawn to scale) shows the graph of y=x2 (3 —Xx). The coordinates
of points P and Q are (2, 4) and (3, 0) respectively.

YA

oV

(1)  Write down the solution set of the inequality x2 (é —x)<0. [4 marks]

(1)  Given that the equation x? (3 — x) = k has three real solutions for x, write down-the
set of possible values for £. | [3 marks]

(1)  The functions fand g are defined as follows:

x5 E0—=—%  0<xr<?2
g:x—=>x*(3-x), 0<x<3

By using (b) (i1) above, or otherwise, show that
a) f hasan inverse
b) g does NOT have an inverse. [6 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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SECTION B (Module 2)

Answer BOTH questions.

3. (a) The vectors p and q are given by

p = 6i + 4j
q=-8i-9j.
(1) Calculate, in dégrees, the angle between p and q. [S marks]

(1) a) Find a non-zero vector v such that p.v= 0.

b)  State the relationship between p and v. [S marks]
(b) The circle C, has (=3, 4) and (1, 2) as endpoints of a diameter.
%o 1K
(i)  Show that the equation of C, is x* + )2 + 2x — 65/ 5 = 0. 6 marks)
(ii)  The circle C, has equation x* + )? + x — 5y = 0. Calculate the coordinates of the
points of intersection of C, and C.. [9 marks]
Total 25 marks

GO ON TO THE NEXT PAGE
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4. (a) (i) Solve the equation cos 34 =0.5for0 <4 <. [4 marks]
(i1) Show that cos 34 =4 cos® 4 — 3 cos A. [6 marks]

(i1) The THREE roots of the equation 4p° — 3p — 0.5 =0 all lie between —1 and 1. Use
the results 1n (a) (1) and (11) to find these roots. [4 marks]

(b) The following diagram, not drawn to scale, represents a painting of height, # metres, that
is fastened to a vertical wall at a height of d metres above, and x metres away from, the

level of an observer, O.

b

Ta
-

The viewing angle of the painting is (o — [3), where a and 3 are respectively the angles of
inclination, in radians, from the level of the observer to the top and base of the painting.

hx

Erdain [6 marks]

(1)  Show that tan (o — B) =

(ii)  The viewing angle of the painting, (o — B), is at a maximum when x =V % (d + h).
Calculate the maximum viewing angle, in radians, when d = 34A.
[5 marks]

Total 25 marks

GO ON TO THE NEXT PAGE
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SECTION C (Module 3)

Answer BOTH questions.

D (a) Find

: lim x*—9
4 k
(1) iy aba [4 marks]
e lim tan x — Sx
: k
() x—0 sin 2x — 4x Emn;]
(b) The function fon R is defined by
oy = 3x—-7, ifx>4
% 1+2x, ifx<4.
(1) Find
oy f(x) [2 marks]
2 ¥l 4%
lim
b) T 6 e £x). [2 marks]
(11) Deduce that f(x) 1s discontinuous at x = 4. [2 marks]
1 1' -
(c) (1) Evaluate_[ [ — —-—x—J dx. [6 marks]
=y

(1)  Using the substitution u = x* + 4, or otherwise, find

Ifo+4a. 3 [4 marks]

Total 25 marks

GO ON TO THE NEXT PAG!
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x2) =
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Fﬁ(; g ,,1’ ; js_.
- 5 =)
: ~ A
(@) Differentiate with respect to x = @\ ) OK/
ey , v A,
i) y=sin (3x+ 2)+ tan 5x @ 4[3 marks]
5 U = (_,"_ . \
() y= e : e _/M [4 marks]
x> —1 el
4
(b) The function f{x) satisfies I fx)dx=17.
1
4
(1) FindJ‘ [3 fix) + 4] dx. [4 marks]
1
3
(i)  Using the substitution # = x + 1, evaluate I 210+ 1)dx. [4 marks]
0
(c) In the diagram below (not drawn to scale), the line x + y = 2 intersects the curve y = x?
at the points P and Q.
= -
X
(i)  Find the coordinates of the points P and Q. [S marks]
(i1)  Calculate the area of the shaded portion of the diagram bounded by the curve and
the straight line. [S marks]
Total 25 marks
END OF TEST
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