Solve, for a e 14, the meduality

0=3+0=312=4

FORM TP 2010227

MAY/JUNE 2010

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PURE MATHEMATICS

UNIT 1 - PAPER 02

ALGEBRA, GEOMETRY AND CALCULUS

2 ½ hours

20 MAY 2010 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 2 questions.

The maximum mark for each Module is 50.

The maximum mark for this examination is 150.

This examination consists of 7 printed pages.

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT open this examination paper until instructed to do so.
- 2. Answer ALL questions from the THREE sections.
- 3. Write your solutions, with full working, in the answer booklet provided.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)

Mathematical formulae and tables (provided) – Revised 2009

Mathematical instruments

Silent, non-programmable, electronic calculator

SECTION A (Module 1)

Answer BOTH questions.

110) 1407f open this examination paper until instituted to do so.

1. (a) Find the values of the constant p such that x - p is a factor of

$$f(x) = 4x^3 - (3p+2)x^2 - (p^2-1)x + 3.$$

[5 marks]

MARRAINAD

(b) Solve, for x and y, the simultaneous equations

$$\log (x - 1) + 2 \log y = 2 \log 3$$

$$\log x + \log y = \log 6.$$

[8 marks]

(c) Solve, for $x \in \mathbb{R}$, the inequality

COUNCIL

$$\frac{2x-3}{x+1}-5>0.$$

[5 marks]

(d) By using $y = 2^x$, or otherwise, solve

$$4^{x}-3(2^{x+1})+8=0.$$

[7 marks]

2. (a) Use the fact that $S_n = \sum_{r=1}^n r = \frac{1}{2} n (n+1)$ to express

$$S_{2n} = \sum_{r=1}^{2n} r \text{ in terms of } n.$$
 [2 marks]

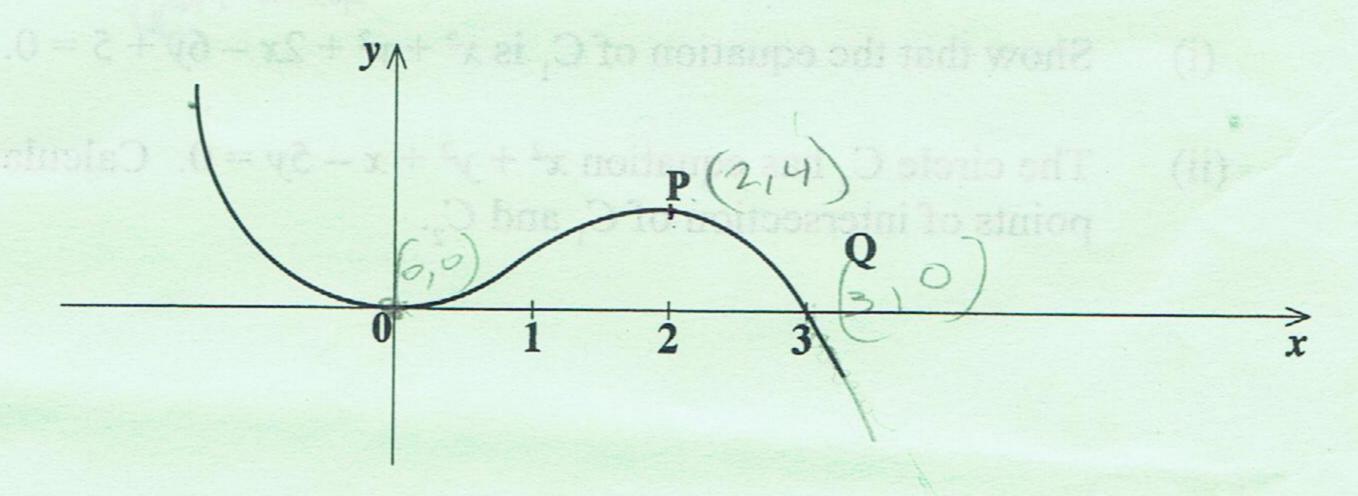
(ii) Find constants p and q such that

$$S_{2n} - S_n = pn^2 + qn.$$
 [5 marks]

(iii) Hence, or otherwise, find n such that

$$S_{2n} - S_n = 260.$$
 [5 marks]

(b) The diagram below (not drawn to scale) shows the graph of $y = x^2 (3 - x)$. The coordinates of points P and Q are (2, 4) and (3, 0) respectively.



- (i) Write down the solution set of the inequality $x^2 (3-x) \le 0$. [4 marks]
- (ii) Given that the equation $x^2(3-x) = k$ has three real solutions for x, write down-the set of possible values for k. [3 marks]
- (iii) The functions f and g are defined as follows:

$$f: x \to x^2 (3-x), \quad 0 < x < 2$$

 $g: x \to x^2 (3-x), \quad 0 < x < 3$

By using (b) (ii) above, or otherwise, show that

- a) f has an inverse
- b) g does NOT have an inverse.

[6 marks]

Total 25 marks

THE STATE OF THE PARTY.

SECTION B (Module 2)

Answer BOTH questions.

3. (a) The vectors **p** and **q** are given by

desirem bl

le marks

adrem 25 marks

GO ON TO THE NEXT PACE

$$\mathbf{p} = 6\mathbf{i} + 4\mathbf{j}$$
$$\mathbf{q} = -8\mathbf{i} - 9\mathbf{j}.$$

(i) Calculate, in degrees, the angle between p and q.

[5 marks]

- (ii) a) Find a non-zero vector \mathbf{v} such that $\mathbf{p} \cdot \mathbf{v} = 0$.
 - b) State the relationship between p and v.

[5 marks]

(b) The circle C_1 has (-3, 4) and (1, 2) as endpoints of a diameter. +2fx+2gy

Cover that the extraction of (3 - c) and has three real spiritions for a swarp down the

(i) Show that the equation of C₁ is $x^2 + y^2 + 2x - 6y + 5 = 0$.

[6 marks]

(ii) The circle C_2 has equation $x^2 + y^2 + x - 5y = 0$. Calculate the coordinates of the points of intersection of C_1 and C_2 . [9 marks]

(iii) a line franctions fand g are defined as follows:

b) g dees MOT have an myerse.

men notes a bas a stastemar out i

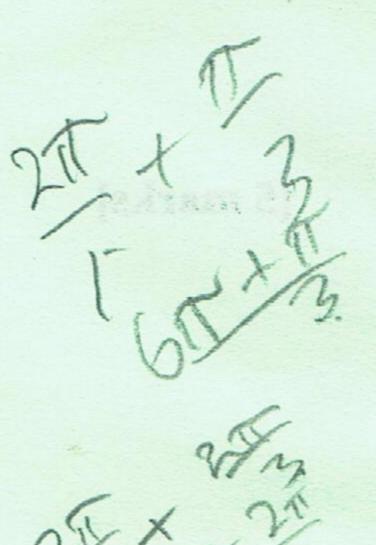
4. (a) Solve the equation $\cos 3A = 0.5$ for $0 \le A \le \pi$.

[4 marks]

(ii) Show that $\cos 3A = 4 \cos^3 A - 3 \cos A$.

[6 marks]

- (iii) The THREE roots of the equation $4p^3 3p 0.5 = 0$ all lie between -1 and 1. Use the results in (a) (i) and (ii) to find these roots. [4 marks]
- (b) The following diagram, **not drawn to scale**, represents a painting of height, h metres, that is fastened to a vertical wall at a height of d metres above, and x metres away from, the level of an observer, O.



12 market

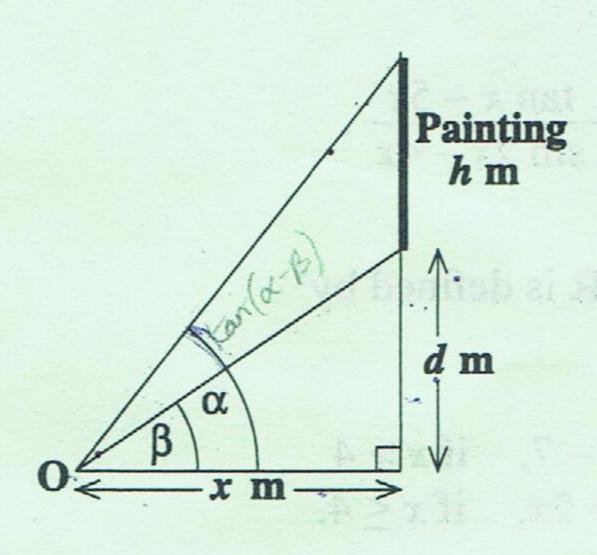
DATE OF THE STREET

indram 4

ENTERNI OF INTOX

かか

872



The viewing angle of the painting is $(\alpha - \beta)$, where α and β are respectively the angles of inclination, in radians, from the level of the observer to the top and base of the painting.

- (i) Show that $\tan (\alpha \beta) = \frac{hx}{x^2 + d(d+h)}$. [6 marks]
- (ii) The viewing angle of the painting, $(\alpha \beta)$, is at a maximum when $x = \sqrt{h(d+h)}$. Calculate the maximum viewing angle, in radians, when d = 3h.

Deduce that f(x) is a supposition one at x = 4.

bott, egreened to the first and morning of the or otherwise, find

[5 marks]

SECTION C (Module 3)

Answer BOTH questions.

(iii) as The THREE roots of the equation $4p^2 - 3p - 0.5 = 0$ all lie between -1 and it. Use

The vicesing and the painting is for - \$1, where a end \$2 are respectively the angles of

5. (a) Find

Jestram di ...

fernam &

eduam el fatul

GO ON TO THE NEXT PAGE

(i)
$$\lim_{x \to 3} \frac{x^2 - 9}{x^3 - 27}$$
 [4 marks]

the results in (a) (i) and (ii) to and these roots.

(ii)
$$\lim_{x \to 0} \frac{\tan x - 5x}{\sin 2x - 4x}.$$
 [5 marks]

(b) The function f on \mathbf{R} is defined by

$$f(x) = \begin{cases} 3x - 7, & \text{if } x > 4 \\ 1 + 2x, & \text{if } x \le 4. \end{cases}$$

gaming at the (i) b Find and a second of the law of the

a)
$$\lim_{x \to 4^+} f(x)$$
 [2 marks]

(a)
$$x \to 4^ f(x)$$
. A substituting of the signs and weiver $f(x)$ [2 marks]

(ii) Deduce that
$$f(x)$$
 is discontinuous at $x = 4$. [2 marks]

(c) (i) Evaluate
$$\int_{-1}^{1} \left[x - \frac{1}{x} \right]^2 dx$$
. [6 marks]

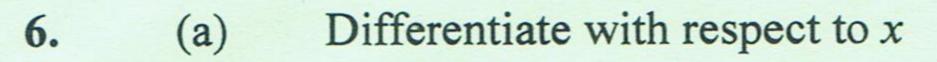
(ii) Using the substitution $u = x^2 + 4$, or otherwise, find

$$\int x \sqrt{x^2 + 4} \, dx.$$
 [4 marks]
Total 25 marks

(2-9)(2+3)

3-7232

32 33 34 35 [3 marks]
(3-3) (3-3) (4 marks]



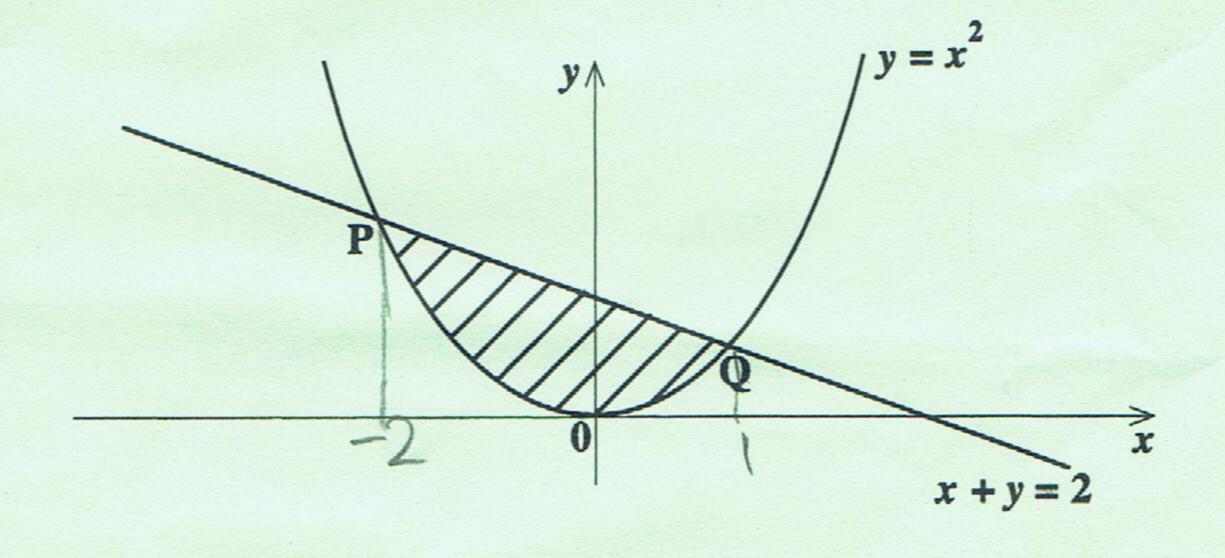
- (i) $y = \sin(3x + 2) + \tan 5x$
- (ii) $y = \frac{x^2 + 1}{x^3 1}$.
- (b) The function f(x) satisfies $\int_{1}^{4} f(x) dx = 7$.
 - (i) Find $\int_{1}^{4} [3 f(x) + 4] dx$.

[4 marks]

(ii) Using the substitution u = x + 1, evaluate $\int_{0}^{3} 2f(x + 1) dx$.

[4 marks]

(c) In the diagram below (not drawn to scale), the line x + y = 2 intersects the curve $y = x^2$ at the points P and Q.



(i) Find the coordinates of the points P and Q.

[5 marks]

(ii) Calculate the area of the shaded portion of the diagram bounded by the curve and the straight line. [5 marks]