COMBINATIONS OF FUNCTIONS: COMPOSITE FUNCTIONS

What You Should Learn

- Add, subtract, multiply, and divide functions.
- Find the composition of one function with another function.
- Use combinations and compositions of functions to model and solve real-life problems.

Arithmetic Combinations of Functions

Given: $f(x)=2 x-3$ and $g(x)=x^{2}-1$

$$
\begin{array}{ll}
f(x)+g(x)=(2 x-3)+\left(x^{2}-1\right)=x^{2}+2 x-4 & \text { Sum } \\
f(x)-g(x)=(2 x-3)-\left(x^{2}-1\right)=-x^{2}+2 x-2 & \text { Difference } \\
f(x) g(x)=(2 x-3)\left(x^{2}-1\right)=2 x^{3}-3 x^{2}-2 x+3 & \text { Product } \\
\frac{f(x)}{g(x)}=\frac{2 x-3}{x^{2}-1}, \quad x \neq \pm 1 & \text { Quotient }
\end{array}
$$

The domain of an arithmetic combination of functions f and g consists of all real numbers that are common to the domains of f and g.

In the case of the quotient $f(x) / g(x)$, there is the further restriction that $g(x) \neq 0$.

Sum, Difference, Product, and Quotient of Functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.

1. Sum: $\quad(f+g)(x)=f(x)+g(x)$
2. Difference: $(f-g)(x)=f(x)-g(x)$
3. Product: $(f g)(x)=f(x) \cdot g(x)$
4. Quotient: $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, \quad g(x) \neq 0$

Given $f(x)=2 x+1$ and $g(x)=x^{2}+2 x-1$ find $(f+g)(x)$.
Then evaluate the sum when $x=3$.

Solution:

$$
\begin{aligned}
(f+g)(x)=f(x)+g(x) & =(2 x+1)+\left(x^{2}+2 x-1\right) \\
& =x^{2}+4 x
\end{aligned}
$$

When $x=3$, the value of this sum is

$$
\begin{aligned}
(f+g)(3) & =3^{2}+4(3) \\
& =21 .
\end{aligned}
$$

Composition of Functions

Given $f(x)=x^{2}$ and $g(x)=x+1$, the composition of f with g is

$$
\begin{aligned}
f(g(x)) & =f(x+1) \\
& =(x+1)^{2} .
\end{aligned}
$$

This composition is denoted as $f \circ g$ and reads as " f composed with g."

©Composition of Functions

Definition of Composition of Two Functions

The composition of the function f with the function g is

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f. (See Figure 1.90.)

Figure 1.90

IFxample 5 - Composition of Functions

Given $f(x)=x+2$ and $g(x)=4-x^{2}$, find the following.
a. $(f \circ g)(x)$ b. $(g \circ f)(x)$ c. $(g \circ f)(-2)$

Solution:

a. The composition of f with g is as follows.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) & & \text { Definition of } f \circ g \\
& =f\left(4-x^{2}\right) & & \text { Definition of } g(x) \\
& =\left(4-x^{2}\right)+2 & & \text { Definition of } f(x) \\
& =-x^{2}+6 & & \text { Simplify. }
\end{aligned}
$$

Example 5 - Solution

b. The composition of g with f is as follows.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) & & \text { Definition of } g \circ f \\
& =g(x+2) & & \text { Definition of } f(x) \\
& =4-(x+2)^{2} & & \text { Definition of } g(x) \\
& =4-\left(x^{2}+4 x+4\right) & & \text { Expand. } \\
& =-x^{2}-4 x & & \text { Simplify. }
\end{aligned}
$$

Note that, in this case, $(f \circ g)(x) \neq(g \circ f)(x)$.
c. Using the result of part (b), you can write the following.

$$
\begin{aligned}
(g \circ f)(-2) & =-(-2)^{2}-4(-2) & & \text { Substitute. } \\
& =-4+8 & & \text { Simplify. } \\
& =4 & & \text { Simplify. }
\end{aligned}
$$

Composition of Functions

Given $h(x)=(3 x-5)^{3}$ is the composition of f with g where $f(x)=x^{3}$ and $g(x)=3 x-5$.

$$
h(x)=(3 x-5)^{3}=[g(x)]^{3}=f(g(x)) .
$$

Application

IFxample 8 - Bacteria Count

The number N of bacteria in a refrigerated food is given by
$N(T)=20 T^{2}-80 T+500, \quad 2 \leq T \leq 14$
where T is the temperature of the food in degrees Celsius.
When the food is removed from refrigeration, the temperature of the food is given by

$$
T(t)=4 t+2,0 \leq t \leq 3
$$

where t is the time in hours.
(a) Find the composition $N(T(t))$ and interpret its meaning in context.
(b) Find the time when the bacteria count reaches 2000.

Mxample 8(a) - Solution

$N(T(t))=20(4 t+2)^{2}-80(4 t+2)+500$

$$
\begin{aligned}
& =20\left(16 t^{2}+16 t+4\right)-320 t-160+500 \\
& =320 t^{2}+320 t+80-320 t-160+500 \\
& =320 t^{2}+420
\end{aligned}
$$

The composite function $N(T(t))$ represents the number of bacteria in the food as a function of the amount of time the food has been out of refrigeration.

The bacteria count will reach 2000 when
$320 t^{2}+420=2000$. Solve this equation to find that the count will reach 2000 when $t \approx 2.2$ hours.

When you solve this equation, note that the negative value is rejected because it is not in the domain of the composite function.

