N.B. The symbols for the "natural numbers", "integers", "real numbers" are N, Z and R $N=\{1,2,3,4, \ldots\}$
$Z=\{\ldots,-2,-1,0,1,2 \ldots\} \quad$ and $R \quad$ is any number that can be found on the number line.

The set of fractions $\{$ rational numbers $\boldsymbol{\}}$ is represented by the letter Q.
e.g. 1: The function f maps from $\mathrm{A}\{$ domain $\}$ to $\mathrm{B}\{$ co-domain \} where $f: x \rightarrow 2 \mathrm{x}-1$. $\mathrm{A}=\{x: x<4, x \in N\}, \quad \mathrm{B}=\{x: x<6, x \in N\}$.
(a) (i) Draw an 'arrow diagram' to show this relation .
(ii) Describe the correspondence.
(iii) State the range of f.
(iv) Give a reason why you would conclude that f is not "surjective" \{onto \}.
answer to part (a) :
(ii) This is a one - to - one correspondence. \{f is injective $\}$
(iii) The 'range' is represented by the values that $f(x)$ can be.

These would be the members of the co-domain that are mapped onto. Thus in this instance it is represented by $\{1,3,5\}$.
(iv) $\quad f$ is surjective only if every member of the co-domain is mapped onto.

Since $2 \in B$ is not mapped onto, this proves that f is not surjective. *

(b) (i) Draw an 'arrow diagram' to show the "inverse" mapping .
(ii) Give a reason why this inverse mapping is not a function.
(iii) Describe a way in which the co-domain of f could be edited so that the inverse mappiing would also be a function. How would you describe the correspondence for f in this instance?

answer to part (b) :

(ii) A mapping is regarded as a function only if every element in A has a unique image in B. Since $4 \in A$ has no image in B, this inverse mapping cannot be regarded as a function for all of the elements in A. *
(ii)

(iii) If the co-domain of f were limited to the set $\{1,3,5\}$, then $\quad f$ would be bijective, and the inverse mapping would be a function in this case.
(iii)

* This is an example of proof by counter example

N.B: only one - to - one and many - to - one correspondences are functions
e.g. 2: The function f maps from $\mathrm{A}\{$ domain $\}$ to $\mathrm{B}\{$ co-domain\} where $f: x \rightarrow 2 \mathrm{x}-1$.

$$
\mathrm{A}=\{x: x \in R\}, \quad \mathrm{B}=\{x: x \in R\}
$$

f is surjective, since $f(x)$ can be any real number.
Since R is infinite it would be impossible to represent all of f by a mapping diagram.
Thus 'proof by exhaustion' is not an option for showing that f is injective.
We are going to have to resort to an alternative type of proof to arrive at the conclusion that f is one - to - one $\{$ injective $\}$.
We already saw from example 1 that only many-to-one and one-to-one mappings are functions. We are going to use this fact to our advantage. If we can show that a function is not many - to - one, then the alternative must be accepted if we maintain that the mapping is a function. **
Thus if $f\left(a_{1}\right)=f\left(a_{2}\right), a_{1}, a_{2} \in A \Rightarrow a_{1}=a_{2}$, we accept that f is injective . In this example, given $a_{1}, a_{2} \in A \quad, \quad f\left(a_{1}\right)=f\left(a_{2}\right) \quad \Rightarrow \quad 2 \mathrm{a}_{1}-1=2 \mathrm{a}_{2}-1$ $\Rightarrow \quad a_{1}=a_{2}$. Therefore f is injective . \{ it can also be shown that f is bijective \}

To find f^{-1} \{ the inverse function \}, we let $y=f(x) \Rightarrow y=2 \mathrm{x}-1$. The inverse is obtained when we exchange x and y. Thus the inverse relation is

$$
x=2 \mathrm{y}-1 \quad \Rightarrow \quad x+1=2 \mathrm{y} \quad \Rightarrow \quad \frac{x+1}{2}=y . \text { Therefore } \quad f^{-1}: x \rightarrow \frac{x+1}{2} .
$$

To find the value of x for which $f(x)=5$, we say ...
If $f(x)=5$, then $x=f^{-1}(5)=\frac{5+1}{2}=3$.
exercise 1 :
1.

A function maps from A to B , where $f: x \rightarrow x^{2}+5$

$$
\mathrm{A}=\{x:-2 \leq x \leq 2, x \in Z\} \text { and } \mathrm{B}=\{x: 0 \leq x \leq 9 \quad x \in Z\}
$$

(a) (i) Draw an 'arrow diagram' to show this relation . (ii) Describe the correspondence.
(iii) State the range of f. (iv) Is f surjective ? \{ give a reason for your answer \}
(b) (i) Show the inverse mapping by means of an arrow diagram.
(ii) Explain why the inverse mapping is not a function for all the elements in A.
2.

$$
f: x \rightarrow \frac{4 \mathrm{x}}{2 \mathrm{x}-1}, x \in R
$$

(a) (i) Find the value of x for which f is not defined.
(ii) Find f^{-1} and state the value of x for which f^{-1} is undefined.
(iii) Given that $f(x)=6$, find x.
(b) Show that $\quad f f(x)=\frac{16 \mathrm{x}}{6 \mathrm{x}+1}, \quad x \neq-\frac{1}{6}$.
answers to the exercise :

1. (ii) $\{5,6,9\}$.
2.

(ii)
$f^{-1}: x \rightarrow \frac{x}{2 \mathrm{x}-4}$,
(iii) $\frac{3}{4}$.

TEST1. :

1. The function f is defined on R by $f: \rightarrow 2 \mathrm{x}+3$
(a) Show that f one - to - one.
(b) find the values of $x \in R$ such that $f f(x)=13$.
2. The functions f and g are defined on R by

$$
\begin{equation*}
f: \rightarrow 3 \mathrm{x}+6, \quad g: \rightarrow x+7 \tag{2}
\end{equation*}
$$

Solve the equation $\quad f(g(2 \mathrm{x}+1)\rangle=30$.
3. The function f is defined on N by $f: \rightarrow 2 \mathrm{x}-1$.

By considering $f(x)=2$, or otherwise, prove that f is not surjective.
Find f^{-1} and state two values in the co-domain of f for which f^{-1} is defined. [4]
State the range of f.

