	indices & logarithms	3						
e.g. 1 :	The number "9" can be written as 3^2 , 9^1 , $81^{\frac{1}{2}}$, $\approx 10^{0.9542}$.							
	Therefore $\log_3 9 = 2$, $\log_9 9 = 1$, $\log_{81} 9 = \frac{1}{2}$ and $\log 9 \approx 0.9542$							
	In general $A = a^x \iff \log_a A = x *$							
eg 2 ·	$\log 25^x = \log (5^2)^x = \log 5^{2x} = 2x = x \times 2 = x \log 25$							
c.g. <i>2</i> .	$\log_5 23 = \log_5 (3) = \log_5 3 = 2x = x \wedge 2 = x \log_5 23$ In general log A^x can be written as $x \log A^*$							
2								
e.g. 3 : answer	Solve $25^{\circ} = 125$							
	$25^x = 125 \implies (5^2)^x = 5^3 \implies 5^{2x} = 5^3 \implies 2x = 3 \implies x = 3$	$=\frac{3}{2}$						
		2						
alternative ·	$25^x - 125 \implies x \log_2 25 = \log_2 125 \implies x = \frac{\log_5 125}{\log_5 125} = \frac{3}{25}$							
unternati v e .	$\log_5 25$ $\log_5 25$ $\log_5 25$ $\log_5 25$ 2							
	log 125							
alternative:	$25^x = 125 \implies x \log 25 = \log 125 \implies x = \frac{100}{\log 25} = 1.5 *$	**						
e.g. 4 :	Solve the equation $9^x - 10 = 3^{x+2}$ giving your answer correct to 3 significant figures.							
answer:								
	$9^{x} - 10 = 3^{x+2} \Rightarrow (3^{2})^{x} - 10 = 3^{2} \times 3^{x}$							
	$(3^{x})^{2} - 9(3^{x}) - 10 = 0 .$ $(3^{x} + 1)(3^{x} - 10) = 0$ Either $3^{x} = -1 \implies$ no solution, since $3^{x} > 0$ Or $3^{x} = 10 \implies x \log 3 = \log 10$.							
	Therefore $x = \frac{\log 10}{\log 2} \approx 2.10$							
	log 3 note that 3^x is always greater than z							
exercise 1 :								
1	Write numbers to represent each of the following;							
(i)	$\log_2 32$, (ii) $\log_2 \frac{1}{64}$, (iii) $\log_4 \frac{1}{64}$,							
(iv)	$\log_3 \frac{1}{27}$, (v) $\log 4.13$ { giving this answer correct to 4 decimal places }							
2	Write logarithms of each of the following with base 16 base 4 base 2 and base 10 $\frac{1}{2}$							
	{ <i>The logarithms in base 10 should be written correct to 4 decimal places.</i> }							
(2)	256 (b) $\frac{1}{2}$ (c) 4 (d) 1							
(u)	16 (c) $\frac{1}{2}$ (u) 1							
	$\{ use \log (A/B) = \log A - \log A$	B }						
3	Write each of the following as single logarithms . $\{use \log (AB) = \log A + \log B\}$	}						
(i)	$x \log_3 a$, (ii) $\log_a 5 + \log_a 12$, (iii) $\log_a 48 - \log_a 16$							

(iv)
$$4 \log_a 2 + \frac{1}{2} \log_a 9$$
, (v) $\frac{3}{4} \log_a 16 - \frac{2}{3} \log_a 8$

4	(a) (i) (iv)	Solve the following equations $16^{x} = 128$, (ii) $9^{x} = 27$, (iii) $1000^{x} = 100000$, $8^{x} = 4$, (v) $27^{x} = 9$, (vi) $1000^{x} = 10$,
	(vii)	$4^x = \frac{1}{8}$, (viii) $3^x = \frac{1}{81}$, (ix) $100^x = \frac{1}{10}$,
	(b) (i)	Solve the following equations giving your answers correct to 3 significant figures. $3^x = 14$, (ii) $7^{x-1} = 2$, (iii) $(\frac{1}{4})^x > 4$ (iv) $0.2^x < 0.5$.
5	(a) (i)	Solve the following equations $8^{x-1} = 16$, (ii) $9^{x-3} = 27$, (iii) $100^{x+1} = 100000$,
	(b) (i)	Solve the following equations giving your answers correct to 3 significant figures. $3^{x-2} = 8$, (ii) $8^{x+1} = 100$, (iii) $0.8^{x-1} > 0.5$.
6	(a) (i)	Solve the following equations $3^{2x} + 9 = 10 (3^x)$, (ii) $x = (\sqrt{x}) + 6$, (iii) $2^{2x} = 2^{x+2} + 32$
	(b)	Solve the equation $4^x = 2^{x+3} + 9$ giving your answer correct to 3 significant figures.
e.g	. 5 :	
	(a)	Change $\log_x 16$ to a logarithm in base 2.

(b) Hence solve for x, $\log_2 x + \log_x 16 = 5$.

answer :

(a)
$$\log_x 16 = \frac{\log_2 16}{\log_2 x} = \frac{4}{\log_2 x}$$
.

(b) If
$$\log_2 x + \log_x 16 = 5$$
 \Rightarrow $\log_2 x + \frac{4}{\log_2 x} = 5$
 $\log_2 x - 5 + \frac{4}{\log_2 x} = 0$ \Rightarrow $\frac{(\log_2 x)^2 - 5\log_2 x + 4}{\log_2 x} = 0$
 $(\log_2 x)^2 - 5\log_2 x + 4 = 0$ \Rightarrow $(\log_2 x - 4)(\log_2 x - 1) = 0$
Either $\log_2 x = 4$ \Rightarrow $x = 2$, Or $\log_2 x = 1$ \Rightarrow $x = 0$.

exercise 2 :

1.	(a)	Write	$\log_x 81$	as a	a loga	rithm ir	n ba	ase 3 .		
	(b)	Hence	solve for	x	,	$\log_3 x$	+	$\log_x 81$	=	4

2. Solve
$$\log_2 x = \log_x 16$$

3. Change the following to logarithms with base 2.

(i) $\frac{1}{\log_x 8}$, (ii) $\frac{1}{\log_x 32}$, (iii) $\log_x 2$, (iii) $1 \div \log_x (\frac{1}{2})$.

answers to the questions in the exercise 1:

(i) 5, (ii) -6, (iii) -3, (iv) -3, (v) 0.6160 1 2 (i) $\log_3 a^x$, (ii) $\log_a 60$, (iii) $\log_a 3$, (iv) $\log_a 48$, (v) $\log_a 2$. 3 (i) $\frac{7}{4}$, (ii) $\frac{3}{2}$, (iii) $\frac{5}{3}$, (iv) $\frac{2}{3}$, (v) $\frac{2}{3}$, (vi) $\frac{1}{3}$, (vii) $-\frac{3}{2}$, (viii) -4, (ix) $-\frac{1}{2}$ (i) 2.40, (ii) 1.36, (iii) x < -1, (iv) x > 0.431. 4 (a) (b) (i) $\frac{7}{3}$, (ii) $\frac{9}{2}$, (iii) $\frac{3}{2}$. (i) 3.89, (ii) 1.21, (iii) x < 4.11. 5 (a) (b) (i) x=0 or x=2, (ii) x=4 or x=9, (iii) x=3. (b) 3.17. 6 (a)

answers to exercise 2 :

1. (a)
$$\frac{4}{\log_3 x}$$
, (b) $x=9$

2.
$$x = 4$$
 , $x = \frac{1}{4}$.

3. (i) $\frac{1}{3} \log_2 x$, (ii) $\frac{1}{5} \log_2 x$, (iii) $\frac{1}{\log_2 x}$, (iv) $-\log_2 x$ or $\log_2(\frac{1}{x})$.

TEST 1 :

3.

If the exact answer cannot be obtained, then write your answer correct to 3 significant figures, unless otherwise instructed.

(a)	Write $\log A + \log M - \log X$ as a single logarithm.	[1]
(b) (i) (ii)	Write 4 as a logarithm in base 2 Write $3 \log_2 A$ as a single logarithm .	[1] [1]
(iii)	Hence write $4 + 3 \log_2 A$ as a single logarithm.	[1]
(c)	Given that $\log_3 y = x$, express y in terms of x.	[1]
(a)	Simplify $\left[\frac{8}{27}\right]^{-\frac{2}{3}}$ writing your answer as a mixed number .	[3]
(b)	Solve for x , $x \in R$.	
(i)	$3^{x-2} = 4$	[3]
(ii)	$x \log 0.25 > \log 0.5$.	[2]
(c)		
(i)	Show that 2^{x+1} is equivalent to $2(2^x)$	[2]
(ii)	Hence or otherwise solve for x , $x \in R$,	
	$4^x - 2^{x+1} = 8$	[4]
	 (a) (b) (i) (ii) (c) (b) (i) (i) (c) (i) (ii) 	 (a) Write log A + log M - log X as a single logarithm. (b) (i) Write 4 as a logarithm in base 2 (ii) Write 3 log₂A as a single logarithm. (iii) Hence write 4 + 3 log₂ A as a single logarithm. (c) Given that log₃ y = x , express y in terms of x. (a) Simplify [8/27]^{-2/3} writing your answer as a mixed number. (b) Solve for x , x ∈ R. (i) 3^{x-2} = 4 (ii) x log 0.25 > log 0.5. (c) (i) Show that 2^{x+1} is equivalent to 2 (2^x) (ii) Hence or otherwise solve for x , x ∈ R , 4^x - 2^{x+1} = 8

TOTAL = 24